Geometric spanners for weighted point sets


Let (S,d) be a finite metric space, where each element p¿¿¿S has a non-negative weight w(p). We study spanners for the set S with respect to weighted distance function d w , where d w (p,q) is w(p)¿+¿d(p,q)¿+¿wq if p¿¿¿q and 0 otherwise. We present a general method for turning spanners with respect to the d-metric into spanners with respect to the d w -metric. For any given e>¿0, we can apply our method to obtain (5¿+¿e)-spanners with a linear number of edges for three cases: points in Euclidean space R d , points in spaces of bounded doubling dimension, and points on the boundary of a convex body in R d where d is the geodesic distance function. We also describe an alternative method that leads to (2¿+¿e)-spanners for points in R d and for points on the boundary of a convex body in R d . The number of edges in these spanners is O(nlogn). This bound on the stretch factor is nearly optimal: in any finite metric space and for any e>¿0, it is possible to assign weights to the elements such that any non-complete graph has stretch factor larger than 2¿-¿e

Similar works

Full text

Last time updated on 6/18/2018

This paper was published in NARCIS .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.