Therapeutic nanocarriers via cholesterol directed self-assembly of well-defined linear-dendritic polymeric amphiphiles

Abstract

A novel platform of fluorescently labeled nanocarriers (NCs) is herein proposed based on amphiphilic linear-dendritic polymeric hybrids. These sophisticated polymers were synthesized with a high degree of structural control at a macro-molecular level, displayed hydrophobic cholesterol compartments as chain-terminus groups of the dendritic block and hydrophilic bifunctional linear poly(ethylene glycol) (PEG) block. Spherical supramolecular assemblies with therapeutically relevant properties were successfully achieved including (i) sizes in the region of 100 to 200 nm; (ii) narrow dispersity profile with values close to 0.12; and (iii) self-assembly down to nanomolar concentrations. The modular nature of the NCs permitted the encapsulation of single or dual anticancer drugs and in parallel provide intracellular fluorescent traceability. As polymer therapeutics, the NCs were proven to penetrate the cancerous cell membranes and deliver the cargo of drugs into the nuclei as well as the cytoplasm and mitochondria. The dual drug delivery of both doxorubicin (DOX) and triptolide substantially enhanced the therapeutic efficacy with a 63% significant increase against resistant breast cancer cells when compared to free DOX

Similar works

Full text

thumbnail-image

University of Queensland eSpace

redirect
Last time updated on 17/06/2018

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.