Background: Existing evidence suggests the potential therapy of transplanting olfactory ensheathing cells (OEC) either alone or in combination with neurotrophic factors or other cell types in optic nerve injury (ONI). However, clinical use of autologous OEC in the acute stages of ONI is not possible. On the other hand, acute application of heterologous transplantation may bring the issue of immune rejection. The olfactory mucosa (OM) with OEC in the lamina propria layer is located in the upper region of the nasal cavity and is easy to dissect under nasal endoscopy, which makes it a candidate as autograft material in acute stages of ONI. To investigate the potential of the OM on the protection of injured neurons and on the promotion of axonal regeneration, we developed a transplantation of syngenic OM in rats with ONI model. Methods After the right optic nerve was crushed in Lewis rats, pieces of syngenic whole-layer OM were transplanted into the lesion. Rats undergoing phosphate buffered saline (PBS) injection were used as negative controls (NC). The authors evaluated the regeneration of retinal ganglion cells (RGCs) and axons for 3, 7, 14, and 28 days after transplantation. Obtained retinas and optic nerves were analyzed histologically. Results Transplantations of OM significantly promoted the survival of retinal ganglion cells (RGCs) and axonal growth of RGCs compared with PBS alone. Moreover, OM group was associated with higher expression of GAP-43 in comparison with the PBS group. In addition to the potential effects on RGCs, transplantations of OM significantly decreased the expression of GFAP in the retinas, suggesting inhibiting astrocyte activation. Conclusions Transplantation of whole-layer OM in rats contributes to the neuronal survival and axon regeneration after ONI
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.