CuO Nanoparticles Supported on TiO2 with High Efficiency for CO2 Electrochemical Reduction to Ethanol

Abstract

Non-noble metal oxides consisting of CuO and TiO2 (CuO/TiO2 catalyst) for CO2 reduction were fabricated using a simple hydrothermal method. The designed catalysts of CuO could be in situ reduced to a metallic Cu-forming Cu/TiO2 catalyst, which could efficiently catalyze CO2 reduction to multi-carbon oxygenates (ethanol, acetone, and n-propanol) with a maximum overall faradaic efficiency of 47.4% at a potential of −0.85 V vs. reversible hydrogen electrode (RHE) in 0.5 M KHCO3 solution. The catalytic activity for CO2 electroreduction strongly depends on the CuO contents of the catalysts as-prepared, resulting in different electrochemistry surface areas. The significantly improved CO2 catalytic activity of CuO/TiO2 might be due to the strong CO2 adsorption ability

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 04/05/2018

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.