SENP1 and SENP2 regulate SUMOylation of amyloid precursor protein

Abstract

Amyloid β, a key molecule in the pathogenesis of Alzheimer's disease (AD), is produced from amyloid precursor protein (APP) by the cleavage of secretases. APP is SUMOylated near the cleavage site of β-secretase. SUMOylation of APP reduces amyloid β production, but its regulatory system is still unclear. SUMOylation, a modification at a lysine residue of a target protein, is mediated by activating, conjugating, and ligating enzymes and is reversed by a family of sentrin/SUMO-specific proteases (SENPs). Here, we found that both SENP1 and SENP2 induced de-SUMOylation of APP. Using quantitative PCR, we also found that expression of SENP1 but not SENP2 increased in an age-dependent manner only in female mice. The results of immunoblot analyses showed that the protein expression was consistent with the PCR results. Females, compared to males, have a higher incidence of AD in humans and show more aggressive amyloid pathology in AD mouse models. Our results provide a clue to understanding the role of SUMOylation in the sex difference in AD pathogenesis

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 04/05/2018

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.