Noninvasively Modifying Band Structures of Wide-Bandgap Metal Oxides to Boost Photocatalytic Activity

Abstract

Although doping with appropriate heteroatoms is a powerful way of increasing visible light absorption of wide-bandgap metal oxide photocatalysts, the incorporation of heteroatoms into the photocatalysts usually leads to the increase of deleterious recombination centers of photogenerated charge carriers. Here, a conceptual strategy of increasing visible light absorption without causing additional recombination centers by constructing an ultrathin insulating heterolayer of amorphous boron oxynitride on wide-bandgap photocatalysts is shown. The nature of this strategy is that the active composition nitrogen in the heterolayer can noninvasively modify the electronic structure of metal oxides for visible light absorption through the interface contact between the heterolayer and metal oxides. The photocatalysts developed show significant improvements in photocatalytic activity under both UV-vis and visible light irradiation compared to the doped counterparts by conventional doping process. These results may provide opportunities for flexibly tailoring the electronic structure of metal oxides

Similar works

Full text

thumbnail-image

University of Queensland eSpace

redirect
Last time updated on 30/04/2018

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.