Identification and control of electro-mechanical systems using state-dependent parameter estimation

Abstract

This paper addresses the important topic of electro-mechanical systems identification with an application in robotics. The standard inverse dynamic identification model with least squares (IDIM-LS) method of identifying models for robotic systems is based on the use of a continuous-time inverse dynamic model whose parameters are identified from experimental data by linear LS estimation. The paper describes a new alternative but related approach that exploits the state-dependent parameter (SDP) method of nonlinear model estimation and compares its performance with that of IDIM-LS. The SDP method is a two-stage identification procedure able to identify the presence and graphical shape of nonlinearities in dynamic system models with a minimum of a priori assumptions. The performance of the SDP method is evaluated on two electro-mechanical systems: the electro-mechanical positioning system and the second link of the TX40 robot. The experimental results demonstrate how SDP identification helps to avoid over-reliance on prior conceptions about the nature of the nonlinear characteristics and correct any deficiencies in this regard. Finally, a simulation study shows how the resulting SDP model is able to facilitate nonlinear control system design using linear-like design procedures

Similar works

Full text

thumbnail-image

The Australian National University

redirect
Last time updated on 26/04/2018

This paper was published in The Australian National University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.