Abstract

An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in prostate cancer involves epithelial plasticity, wherein tumor cells demonstrate low to absent AR expression and often neuroendocrine features. The etiology and molecular basis for these “alternative” treatment-resistant cell states remain incompletely understood. Here, by analyzing whole exome sequencing data of metastatic biopsies from patients, we observed significant genomic overlap between castration resistant adenocarcinoma (CRPC-Adeno) and neuroendocrine histologies (CRPC-NE); analysis of serial progression samples points to a model most consistent with divergent clonal evolution. Genome-wide DNA methylation revealed marked epigenetic differences between CRPC-NE and CRPC-Adeno that also designated cases of CRPC-Adeno with clinical features of AR-independence as CRPC-NE, suggesting that epigenetic modifiers may play a role in the induction and/or maintenance of this treatment-resistant state. This study supports the emergence of an alternative, “AR-indifferent” cell state through divergent clonal evolution as a mechanism of treatment resistance in advanced prostate cancer

Similar works

Full text

thumbnail-image

Harvard University - DASH

redirect

This paper was published in Harvard University - DASH.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.