Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser

Abstract

Pulse propagation phenomena are central to ultrashort pulse generation and amplification in lasers1–5. In the coherent regime, the phase relationship between the pulse and the material transition is preserved, allowing both optical fields and material states to be controlled6. The most prominent form of coherent manipulation is Rabi flopping7, a phenomenon well established in few-level absorbers, including atoms and single quantum dots8–19. However, Rabi flopping is generally much weaker in semiconductors because of strong dephasing in the electronic bands, in contrast to discrete-level systems. Although low-density induced coherent oscillations have been observed in semiconductor absorbers11,13–20, coherent pulse propagation phenomena in active semiconductor devices have not been observed. In this Letter, we explore coherent pulse propagation in an operating quantum cascade laser and directly observe Rabi flopping and coherent pulse reshaping. This work demonstrates the applicability of few-level models for quantum cascade lasers and may stimulate novel approaches to short pulse generationPhysic

Similar works

Full text

thumbnail-image

Harvard University - DASH

redirect

This paper was published in Harvard University - DASH.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.