Genetic Variants Associated with Port-Wine Stains

Abstract

Background: Port-wine stains (PWS) are capillary malformations, typically located in the dermis of the head and neck, affecting 0.3% of the population. Current theories suggest that port-wine stains are caused by somatic mutations that disrupt vascular development. Objectives: Understanding PWS genetic determinants could provide insight into new treatments. Methods: Our study used a custom next generation sequencing (NGS) panel and digital polymerase chain reaction to investigate genetic variants in 12 individuals with isolated port-wine stains. Importantly, affected and healthy skin tissue from the same individual were compared. A subtractive correction method was developed to eliminate background noise from NGS data. This allowed the detection of a very low level of mosaicism. Results: A novel somatic variant GNAQ, c.547C>G, p.Arg183Gly was found in one case with 4% allele frequency. The previously reported GNAQ c.548G>A, p.Arg183Gln was confirmed in 9 of 12 cases with an allele frequency ranging from 1.73 to 7.42%. Digital polymerase chain reaction confirmed novel variants detected by next generation sequencing. Two novel somatic variants were also found in RASA1, although neither was predicted to be deleterious. Conclusions: This is the second largest study on isolated, non-syndromic PWS. Our data suggest that GNAQ is the main genetic determinant in this condition. Moreover, isolated port-wine stains are distinct from capillary malformations seen in RASA1 disorders, which will be helpful in clinical evaluation

Similar works

Full text

thumbnail-image

Harvard University - DASH

redirect

This paper was published in Harvard University - DASH.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.