Abstract

Summary Postnatal mammary gland development and differentiation occur during puberty and pregnancy. To explore the role of DNA methylation in these processes, we determined the genome-wide DNA methylation and gene expression profiles of CD24+CD61+CD29hi, CD24+CD61+CD29lo, and CD24+CD61−CD29lo cell populations that were previously associated with distinct biological properties at different ages and reproductive stages. We found that pregnancy had the most significant effects on CD24+CD61+CD29hi and CD24+CD61+CD29lo cells, inducing distinct epigenetic states that were maintained through life. Integrated analysis of gene expression, DNA methylation, and histone modification profiles revealed cell-type- and reproductive-stage-specific changes. We identified p27 and TGFβ signaling as key regulators of CD24+CD61+CD29lo cell proliferation, based on their expression patterns and results from mammary gland explant cultures. Our results suggest that relatively minor changes in DNA methylation occur during luminal differentiation compared with the effects of pregnancy on CD24+CD61+CD29hi and CD24+CD61+CD29lo cells

Similar works

This paper was published in Harvard University - DASH.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.