Generating Big Data Sets from Knowledge-based Decision Support Systems to Pursue Value-based Healthcare

Abstract

Talking about Big Data in healthcare we usually refer to how to use data collected from current electronic medical records, either structured or unstructured, to answer clinically relevant questions. This operation is typically carried out by means of analytics tools (e.g. machine learning) or by extracting relevant data from patient summaries through natural language processing techniques. From other perspective of research in medical informatics, powerful initiatives have emerged to help physicians taking decisions, in both diagnostics and therapeutics, built from the existing medical evidence (i.e. knowledge-based decision support systems). Much of the problems these tools have shown, when used in real clinical settings, are related to their implementation and deployment, more than failing in its support, but, technology is slowly overcoming interoperability and integration issues. Beyond the point-of-care decision support these tools can provide, the data generated when using them, even in controlled trials, could be used to further analyze facts that are traditionally ignored in the current clinical practice. In this paper, we reflect on the technologies available to make the leap and how they could help driving healthcare organizations shifting to a value-based healthcare philosophy

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 08/04/2018

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.