Oligochaete assemblages associated with macrophytes in the Liangzi Lake District, China

Abstract

The assemblage of oligochaetes in the Liangzi Lake District, located in middle reaches of the Changjiang River, was studied from May to August, 2001. To establish species composition, richness, and abundance and detect the influence of environmental variables on oligochaete distributional patterns, 45 localities were sampled. All total, 20 species belonging to the families Naididae (eight species), Tubificidae (11 species), and Lumbriculidae (one species) were found. Branchiura sowerbyi, Tubifex sp. 1, and Aulodrilus pluriseta were the dominant species and contributed nearly 70% of the total abundance. The 45 sampling sites were separated into three groups based on composition and relative abundance of benthic oligochaete communities using two-way indictor species analysis associated with detrended correspondence analysis. Canonical correspondence analysis indicated that two plant variables (total plant cover and total submersed macrophyte biomass) were strongly correlated with the faunal gradient (p < 0.05). Other predicator variables were water depth and total nitrogen.The assemblage of oligochaetes in the Liangzi Lake District, located in middle reaches of the Changjiang River, was studied from May to August, 2001. To establish species composition, richness, and abundance and detect the influence of environmental variables on oligochaete distributional patterns, 45 localities were sampled. All total, 20 species belonging to the families Naididae (eight species), Tubificidae (11 species), and Lumbriculidae (one species) were found. Branchiura sowerbyi, Tubifex sp. 1, and Aulodrilus pluriseta were the dominant species and contributed nearly 70% of the total abundance. The 45 sampling sites were separated into three groups based on composition and relative abundance of benthic oligochaete communities using two-way indictor species analysis associated with detrended correspondence analysis. Canonical correspondence analysis indicated that two plant variables (total plant cover and total submersed macrophyte biomass) were strongly correlated with the faunal gradient (p < 0.05). Other predicator variables were water depth and total nitrogen

Similar works

Full text

thumbnail-image

Institute of Hydrobiology, Chinese Academy Of Sciences

redirect
Last time updated on 15/03/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.