A SEVA soft sensor method based on self-calibration model and uncertainty description algorithm

Abstract

Soft sensors are widely used to estimate process variables that are difficult to measure online. However, due to poor quality of input data and deterioration of prediction model as time passes, soft sensors make poor performance. We have been constructing a principal component analysis (PCA) model before performing a prediction. Furthermore, the just-in-time (JIT) learning model has been improved and served as prediction model for self validating (SEVA) soft sensors. The proposed soft sensor not only carries out internal quality assessment but also generates multiple types of output data, including the prediction values (PV), input sensor status (ISS), validated measurement (VM), output sensor status (OSS) and the uncertainty values (UV) which represent the credibility of soft sensors' output. The effectiveness of the proposed SEVA soft sensors is demonstrated through a case study of a wastewater treatment process

Similar works

Full text

thumbnail-image

UQ eSpace (University of Queensland)

redirect
Last time updated on 30/08/2013

This paper was published in UQ eSpace (University of Queensland).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.