Neodymium-cerium oxide as new thermal barrier coating material

Abstract

Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 degrees C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 Wt-% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating

Similar works

Full text

thumbnail-image

Changchun Institute of Applied Chemistry, Chinese Academy Of Sciences

redirect
Last time updated on 13/03/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.