Regulation of specialised metabolites in Actinobacteria - expanding the paradigms

Abstract

The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media conditions. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role which these compounds play in their natural habitat as well as providing tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here we provide an overview of novel regulatory mechanisms that act in physiological, global, and cluster specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications

Similar works

Full text

thumbnail-image

University of Strathclyde Institutional Repository

redirect
Last time updated on 13/03/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.