Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner

Abstract

Flame flatness is one of the most critical factors in evaluating the performance of a flat-flame burner. In this paper, the flame flatness of a flat-flame burner is validated using a resolution-doubled one-dimensional wavelength modulation spectroscopy tomography (1D-WMST) technique that only uses one view of multiple parallel laser beams. When the interval of two neighboring parallel laser beams is Δr, a designed novel geometry of the parallel laser beams realizes a doubled tomographic resolution of Δr/2. Using the proposed technique, the distributions of temperature and H2O mole fraction in an axisymmetric premixed flame are simultaneously reconstructed and hence the flame flatness of a flat-flame burner can be validated. The flatness factor is quantitatively described by the similarity between the reconstructed and expected distributions of H2O mole fraction. For flat and non-flat flames, the experimental results agree well with the CFD simulation results, denoting that the resolution-doubled 1D-WMST technique provides a noninvasive, reliable and low cost way to validate the flame flatness of the flat-flame burner.</p

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess