Improving Freeze–Thaw Resistance of Concrete Road Infrastructure by Means of Superabsorbent Polymers

Abstract

The scope of the paper is to report an investigation on durability of infrastructure concrete for roads and bridges by creating a size and shape-designed pore systems in concrete in order to improve it, especially in terms of freeze–thaw resistance. By means of this experimental laboratory study, an alternative for usage of air entrainment agents (AEA) in concrete infrastructures was found in the way of using superabsorbent polymer materials (SAPs). The effect of the addition of SAPs of different amounts and different types into fresh concrete mix was investigated, including: compressive strength tests, weight loss measurements, visual and microscopic inspections and scanning electron microscopy (SEM) analysis. The detrimental strength reduction effect was not observed. The freeze–thaw procedure was varied, using different types of de-icing salts and heating/cooling regimes. It can be concluded that an improvement of the freeze–thaw resistance of concrete infrastructure depends on the particle size and optimal amount of SAPs added into concrete mix. The addition of 0.26 wt % of dry SAPs into the fresh concrete reference mix led to the significant decrease of scaling up to 43% after 28 freeze–thaw cycles. Both dosage and particle size of the SAPs had a significant impact on the obtained results and the freeze–thaw resistance in this experimental laboratory study

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/02/2018

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.