The internal dynamic modes of charged self-assembled peptide fibrils

Abstract

Photon correlation spectroscopy is used to study the internal dynamics of self-assembled charged peptide fibrils. Short neutral and charged polymeric aggregates have diffusive modes due to whole macromolecular motion. For long semiflexible fibrils the logarithm of the intermediate scattering function follows a q2t3/4 scaling at long times consistent with a Kratky-Porod free energy and preaveraged Oseen hydrodynamics. Persistence lengths on the order of micrometers are calculated for the peptide fibrils consistent with estimates from the liquid-crystalline phase behavior. Fibril diameters (5-35 nm) calculated from the initial decay of the correlation functions are in agreement with transmission electron microscopy measurements

    Similar works

    Full text

    thumbnail-image

    Enlighten

    redirect
    Last time updated on 12/02/2018

    This paper was published in Enlighten.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.