Detection of nitric oxide release from single neurons in the pond snail, Lymnaea stagnalis

Abstract

Multiple film-coated nitric oxide sensors have been fabricated using Nafion and electropolymerized polyeugenol or o-phenylenediamine on 30-?m carbon fiber disk electrodes. This is a rare study that utilizes disk electrodes rather than the widely used protruding tip microelectrodes in order to measure from a biological environment. These electrodes have been used to evaluate the differences in nitric oxide release between two different identified neurons in the pond snail, Lymnaea stagnalis. These results show the first direct measurements of nitric oxide release from individual neurons. The electrodes are very sensitive to nitric oxide with a detection limit of 2.8 nM and a sensitivity of 9.46 nA ?M-1. The sensor was very selective against a variety of neurochemical interferences such as ascorbic acid, uric acid, and catecholamines and secondary oxidation products such as nitrite. Nitric oxide release was measured from the cell bodies of two neurons, the cerebral giant cell (CGC) and the B2 buccal motor neuron, in the intact but isolated CNS. A high-Ca2+/high-K+ stimulus was capable of evoking reproducible release. For a given stimulus, the B2 neuron released more nitric oxide than the CGC neuron; however, both cells were equally suppressed by the NOS inhibitor l-NAM

    Similar works

    Full text

    thumbnail-image

    Southampton (e-Prints Soton)

    redirect
    Last time updated on 05/04/2012

    This paper was published in Southampton (e-Prints Soton).

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.