Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure

Abstract

This study presents some novel results about analysis and design of low-frequency or broadband-frequency vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure in passive or semi-active control manners. It is shown that the system has inherent nonlinear stiffness and damping properties due to structure geometrical nonlinearity. Theoretical analysis reveals that the hybrid isolation system can achieve very good ultra-low-frequency isolation through a significantly-improved anti-resonance frequency band (by designing structure parameters). Noticeably, the system can realize a uniformly-low broadband vibration transmissibility, which has never been reported before. Cases studies show that the system can work very well with good isolation performance subject to multi-tone and random excitations. The results provide a new innovative approach to passive or semi-active vibration control (e.g., via a simple linear stiffness control) for many engineering problems with better ultra-low/broadband-frequency vibration suppression.Department of Mechanical Engineerin

Similar works

Full text

thumbnail-image

The Hong Kong Polytechnic University Pao Yue-kong Library

redirect
Last time updated on 10/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.