Mathematical analysis of plasmonic nanoparticles: the scalar case

Abstract

Localized surface plasmons are charge density oscillations confined to metallic nanoparticles. Excitation of localized surface plasmons by an electromagnetic field at an incident wavelength where resonance occurs results in a strong light scattering and an enhancement of the local electromagnetic fields. This paper is devoted to the mathematical modeling of plasmonic nanoparticles. Its aim is threefold: (i) to mathematically define the notion of plasmonic resonance and to analyze the shift and broadening of the plasmon resonance with changes in size and shape of the nanoparticles; (ii) to study the scattering and absorption enhancements by plasmon resonant nanoparticles and express them in terms of the polarization tensor of the nanoparticle. Optimal bounds on the enhancement factors are also derived; (iii) to show, by analyzing the imaginary part of the Green function, that one can achieve super-resolution and super-focusing using plasmonic nanoparticles. For simplicity, the Helmholtz equation is used to model electromagnetic wave propagation.CAM

Similar works

Full text

thumbnail-image

Infoscience - École polytechnique fédérale de Lausanne

redirect
Last time updated on 09/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.