A Rao-Blackwellized Mixed State Particle Filter for Head Pose Tracking

Abstract

This paper presents a Rao-Blackwellized mixed state particle filter for joint head tracking and pose estimation. Rao-Blackwellizing a particle filter consists of marginalizing some of the variables of the state space in order to exactly compute their posterior probability density function. Marginalizing variables reduces the dimension of the configuration space and makes the particle filter more efficient and requires a lower number of particles. Experiments were conducted on our head pose ground truth video database consisting of people engaged in meeting discussions. Results from these experiments demonstrated benefits of the Rao-Blackwellized particle filter model with fewer particles over the mixed state particle filter model.LIDIAPPublished in ACM ICMI Workshop on Multimodal Multiparty Meeting Processing (MMMP), 200

Similar works

Full text

thumbnail-image

Infoscience - École polytechnique fédérale de Lausanne

redirect
Last time updated on 09/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.