First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene

Abstract

The dumbbell structure of two-dimensional group IV material offers alternatives to grow thin films for diverse applications. Thermal properties are important for these applications. We obtain the lattice thermal conductivity of low-buckled (LB) and dumbbell (DB) silicene by using first-principles calculations and the Boltzmann transport equation for phonons. For LB silicene, the calculated lattice thermal conductivity with naturally occurring isotope Concentrations is 27.72 W/mK. For DB silicene, the calculated value is 2.86 W/mK. The thermal conductivity for DB silicene is much lower than LB silicene due to stronger phonon scattering. Our results will induce further theoretical and experimental investigations on the thermoelectric (TE) properties of DB silicene. The size-dependent thermal conductivity in both LB and DB silicene is investigated as well for designing TE devices. This work sheds light on the manipulation of phonon transport in two-dimensional group IV materials by dumbbell structure formed from the addition of adatoms

Similar works

Full text

thumbnail-image

Institutional Repository of Ningbo Institute of Material Technology & Engineering, CAS

redirect
Last time updated on 22/01/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.