We investigate a mathematical model describing 3D steady-state flows of Bingham-type fluids in a bounded domain under threshold-slip boundary conditions, which state that flows can slip over solid surfaces when the shear stresses reach a certain critical value. Using a variational inequalities approach, we suggest the weak formulation to this problem. We establish sufficient conditions for the existence of weak solutions and provide their energy estimates. Moreover, it is shown that the set of weak solutions is sequentially weakly closed in a suitable functional space
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.