Location of Repository

Untersuchung möglicher Wege zur Präparation von Nioboxynitriden mittels thermischer Kurzzeitprozesse

By Volha A. Matylitskaya

Abstract

In dieser Arbeit wurden mögliche Wege zur Präparation von Nioboxynitriden mittels thermischer Kurzzeitprozesse (Rapid Thermal Processing (RTP)) in dünnen Metallfilmen untersucht. Die dafür verwendeten Nb-Filme wurden mittels Magnetronsputtern auf ein thermisch oxidiertes Siliziumsubstrat (SiO2/Si-Substrat) aufgebracht. Die SiO2-Schicht hatte eine Dicke von 100 nm und soll die unerwünschte Reaktion zwischen Si und Nb vermeiden, welche zur Bildung von Niobsiliziden bei der RTP-Temperung führen kann. Um Nioboxynitride zu präparieren wurden Nb-Filme in mehreren Schritten mittels RTP behandelt. Durch die Variation der Ansatzreihenfolge (Oxidation und Nitridierung), der Reaktionsgase (O2, N2, NH3), der Reaktionstemperatur und der Reaktionszeit sowie der Schichtdicke der Proben wurde die Möglichkeit der Bildung von Nioboxynitriden untersucht. Es stellte sich heraus, dass die Bildung von Nioboxynitriden bei der Nitridierung der Nb2O5-Filme in Ammoniak erfolgt. Die Nb2O5-Filme wurden durch die Oxidation der as-deposited Nb-Filme im molekularem Sauerstoff bei 450 °C (nach 5 min Oxidation) bzw. bei 500 °C (nach 1 min Oxidation) hergestellt. Die gebildete Nb2O5-Phase wurde dem orthorhombischen beta-Nb2O5 zugeordnet. Die Oberfläche der Nb2O5-Filme zeigte Rissbildung sowie sichtbare Delamination bzw. Ablösung der Nb-Filme vom Substrat. Dies wird durch das Stressaufkommen im Film bei der direkten Oxidation des as-deposited Films im O2-Strom erklärt. Das Stressaufkommen wird durch eine starke Ausdehnung des Kristallgitters von Niob bei der Bildung des Nb2O5 sowie durch eine hohe Oxidationsrate des as-deposited Nb-Films in O2 hervorgerufen. Das Herabsetzen der Oxidationsgeschwindigkeit verringerte den Stress zwischen dem Metall und Niobpentoxid und verbesserte die Oberflächenqualität des Films nach der Temperung. Eine Herabsetzung der Reaktionsgeschwindigkeit wurde durch die Änderung der Ansatzreihenfolge erreicht. Die Oxidation der vorher nitridierten Nb-Filme führte zu einer langsameren Bildung des Nb2O5 im Vergleich zu den Filmen, die einer direkten Oxidation im O2-Strom ausgesetzt wurden. Dies wurde durch die Barrierefunktion der bei der Nitridierung gebildeten Niobnitride gegen den eindiffundierenden Sauerstoff hervorgerufen. Bei der Oxidation wurde die Diffusion des Sauerstoffes im nitridierten Film durch den Stickstoff gehemmt, was zu einer Abnahme der Oxidationsgeschwindigkeit und somit zu einer langsameren Bildung des Nb2O5 führte. Die Oxidation der zuvor nitridierten Filme führte zu wesentlich niedrigerem Stress zwischen dem Niob und den gebildeten Oxidphasen als zwischen dem Niob und dem Niobpentoxid bei der direkten Oxidation des Niobs in molekularem Sauerstoff. Die weitere Nitridierung der Filme, bei denen bei der Oxidation der bereits nitridierten Filme die Bildung nur einer Nb2O5-Phase erfolgte, führte zur Bildung von zwei Phasen: Nb4N3 und NbxNyOz. Die Zusammensetzung des gebildeten Nioboxynitrides entspricht am wahrscheinlichsten einer Zusammensetzung von NbN0.6O0.2. Sowohl die 200 als auch 500 nm-Filme zeigten nach der dreifachen Temperung eine hohe Porosität. Die hohe Porosität der Probe wurde durch Gasbildung und -diffusion (H2, H2O) im Innern des Films bei der Temperung des Nb2O5-Films in NH3 verursacht. Die EFTEM/EELS-Untersuchungen zeigten, dass sich beim dünnen 200 nm-Film zwei ausgeprägte Zonen (an der Oberfläche – Nb4N3, im Bulk bzw. am Interface – NbxNyOz) gebildet haben. Beim 500 nm-Film zeigte sich, dass die stickstoffhaltigen sowie stickstoff- und sauerstoffhaltigen Zonen, welche entsprechend Nb4N3 und NbxNyOz zugeordnet wurden, im ganzen Film ziemlich gleichmäßig verteilt sind. Ein Hinweis auf die Bildung eines Nioboxynitrides durch die Nitridierung der unvollständig oxidierten Nb-Filme im molekularen Stickstoff wurde nicht gefunden. Bei diesen Temperungen erfolgte die Bildung von unterschiedlichen Oxid- und Nitridphasen. Es wurde festgestellt, dass die Oxidation sowie die Nitridierung der Nb-Filme zu einem texturierten Wachstum der gebildeten Phasen führten. Die SiO2-Schicht auf dem (100)-orientierten Silizium wirkte sich auf das Schichtwachstum des auf das Silizium aufgebrachten Niobs aus und beeinflusste die Kristallstruktur der entstandenen Nb-Schicht und der bei den RTP-Temperungen gebildeten Phasen. Bei dünnen Schichten, wirkt sich dieser Effekt stärker aus, da der Einfluss des Substrates mit wachsender Schichtdicke abnimmt. Die bei der Oxidation gebildeten Nioboxide stellten eine starke Diffusionsbarriere für den bei der Nitridierung eindiffundierenden Stickstoff dar, was zur Aufstauung von Stickstoff in den an der Oberfläche liegenden Filmschichten führte. Die Analyse der erhaltenen SIMS-Daten zeigte, dass bei der Nitridierung der bereits oxidierten Filme die Diffusion des Stickstoffes zwei gleichzeitig ablaufende Prozesse verursacht. Von einer Seite verdrängt der eindiffundierende Stickstoff den Sauerstoff aus dem Film. Andererseits führt die Diffusion des Stickstoffes aufgrund des Schneepflug-Effekts zur Aufstauung des Sauerstoffes in den tiefliegenden Bereichen des Films. Gleichartige Diffusionsprozesse wurden bei der Oxidation der bereits nitridierten Filme beobachtet. Die Nioboxide, welche am Interfacebereich detektiert wurden, bildeten sich durch die Reaktion zwischen Niob und dem aus der SiO2-Schicht ausdiffundierenden Sauerstoff. Die Gegenwart der schon vorhandenen Nioboxide hemmte allerdings die Ausdiffusion des Sauerstoffes aus der SiO2-Schicht des Substrates im Vergleich zu den unoxidierten Filmen.In this work the feasibility of forming thin films of niobium oxynitrides by rapid thermal processing (RTP) was investigated. 200 and 500 nm niobium films were deposited via sputtering on Si-(100)-wafers covered by a 100 nm thick thermally grown SiO2 layer. These as-deposited films exhibited distinct texture effects. They were processed in several steps using an RTP-system. The formation of oxynitrides was studied by varying parameters like the sequence of nitridation and oxidation, the reaction gases (O2, N2, NH3) the temperature and the duration of the reactions. It was shown that nitridation of the completely oxidized niobium films in ammonia leads to the formation of a niobium oxynitride phase. Nitridation in ammonia of niobium pentoxide films, which were synthesized through the reaction of as-deposited niobium films with oxygen, resulted in the formation of oxynitride films with considerable surface roughness. Direct oxidation of as-deposited Nb films in molecular oxygen to niobium pentoxide led to the delamination of Nb2O5 film from the substrate. This was ascribed to the large expansion of the niobium lattice during direct oxidation of the Nb film in molecular oxygen and to the high oxidation rate of as-deposited Nb films in O2. Nitrogen hinders the diffusion of oxygen in nitridated films, this leads to a decrease of the oxidation rate and thus to slower formation of Nb2O5. It was shown that surface roughness of the samples after oxidation of niobium films first nitridated in ammonia is lower then after direct oxidation of as-deposited films in oxygen, although the niobium pentoxide phase formed after annealing was the same in both cases. The formation first of a niobium nitride layer, which, acting as a diffusion barrier, slows down the formation of Nb2O5 improves the surface quality of the film. Nitridation of the partially oxidized niobium films in molecular nitrogen using RTP led to the formation of various niobium nitride and oxide phases but no indication of niobium oxynitride formation was found

Topics: ddc:540
Year: 2009
OAI identifier: oai:publikationen.ub.uni-frankfurt.de:6266

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.