Oncogenic transformation of lung cells results in distinct exosome protein profile similar to the cell of origin

Abstract

Lung cancer is responsible for the highest rate of cancer mortality worldwide. Lung cancer patients are often ineligible for tumor biopsies due to comorbidities. As a result, patients may not have the most effective treatment regimens administered. Patients with mutations in the epidermal growth factor receptor (EGFR) have improved survival in response to EGFR tyrosine kinase inhibitors. A noninvasive method of determining EGFR mutations in patients would have promising clinical applications. Exosomes have the potential to be noninvasive novel diagnostic markers in cancer. Using MS analysis, we identify differentially abundant cell and exosome proteins induced by mutations in p53 and EGFR in lung cells. Importantly, mutations in p53 and EGFR alter cell and exosome protein content compared to an isogenic normal lung epithelial cell. For some proteins, mutation had similar effects in the cell of origin and exosomes. Differences between the cells of origin and exosomes were also apparent, which may reflect specific packaging of proteins into exosomes. These findings that mutations alter protein abundance in exosomes suggest that analysis of exosomes may be beneficial in the diagnosis of oncogenic mutations

Similar works

Full text

thumbnail-image

University of Queensland eSpace

redirect
Last time updated on 01/01/2018

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.