Skip to main content
Article thumbnail
Location of Repository

From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO2 to formic acid

By Tran Ngoc Huan, Eugen S. Andreiadis, Jonathan Heidkamp, Philippe Simon, Etienne Derat, Saioa Cobo, Guy Royal, Arno Bergmann, Peter Strasser, Holger Dau, Vincent Artero and Marc Fontecave


Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of new energy storage technologies is central to solving the challenges facing the widespread use of renewable energies. An option is the reduction of carbon dioxide (CO2) into carbon-based products which can be achieved within an electrochemical cell. Future developments of such processes depend on the availability of cheap and selective catalysts at the electrode. Here we show that a unique well-characterized active electrode material can be simply prepared via electrodeposition from a molecular copper complex precursor. The best performances, namely activity (150 mV onset overpotential and 1 mA cm (2) current density at 540 mV overpotential), selectivity (90% faradaic yield) and stability for electrocatalytic reduction of CO2 into formic acid in DMF/H2O ( 97 : 3 v/v) have been obtained with the [Cu(cyclam)](ClO4)(2) complex (cyclam = 1,4,8,11-tetraazacyclotetradecane) as the precursor. Remarkably the organic ligand of the Cu precursor remains part of the composite material and the electrocatalytic activity is greatly dependent on the nature of that organic component.DFG, EXC 314, Unifying Concepts in Catalysi

Topics: 540 Chemie und zugeordnete Wissenschaften, 530 Physik
Year: 2015
DOI identifier: 10.1039/c4ta07022d
OAI identifier:
Provided by: DepositOnce
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • https://depositonce.tu-berlin.... (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.