benchmarking for steganography by kernel fisher discriminant criterion

Abstract

In recent years, there have been many steganographic schemes designed by different technologies to enhance their security. And a benchmarking scheme is needed to measure which one is more detectable. In this paper, we propose a novel approach of benchmarking for steganography via Kernel Fisher Discriminant Criterion (KFDC), independent of the techniques in steganalysis. In KFDC, besides between-class variance resembles what Maximum Mean Discrepancy (MMD)merely concentrated on, within-class variance plays another important role. Experiments show that KFDC is qualified for the indication of the detectability of steganographic algorithms. Then, we use KFDC to illustrate detailed analysis on the security of JPEG and spatial steganographic algorithms. © 2012 Springer-Verlag Berlin Heidelberg.In recent years, there have been many steganographic schemes designed by different technologies to enhance their security. And a benchmarking scheme is needed to measure which one is more detectable. In this paper, we propose a novel approach of benchmarking for steganography via Kernel Fisher Discriminant Criterion (KFDC), independent of the techniques in steganalysis. In KFDC, besides between-class variance resembles what Maximum Mean Discrepancy (MMD)merely concentrated on, within-class variance plays another important role. Experiments show that KFDC is qualified for the indication of the detectability of steganographic algorithms. Then, we use KFDC to illustrate detailed analysis on the security of JPEG and spatial steganographic algorithms. © 2012 Springer-Verlag Berlin Heidelberg

Similar works

Full text

thumbnail-image

Institute Of Software, Chinese Academy Of Sciences

redirect
Last time updated on 30/12/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.