This paper presents a generalized hybrid evolutionary optimization structure that not only combines both nondeterministic and deterministic algorithms on their individual merits and distinct advantages, but also offers behaviors of the three originating classes of evolutionary algorithms (EAs). In addition, a robust mutation operator is developed in place of the necessity of mutation adaptation, based on the mutation properties of binary-coded individuals in a genetic algorithm. The behaviour of this mutation operator is examined in full and its performance is compared with adaptive mutations. The results show that the new mutation operator outperforms adaptive mutation operators while reducing complications of extra adaptive parameters in an EA representation
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.