Quantitative analysis reveals how EGFR activation and downregulation are coupled in normal but not in cancer cells

Abstract

Ubiquitination of the epidermal growth factor receptor (EGFR) that occurs when Cbl and Grb2 bind to three phosphotyrosine residues (pY1045, pY1068 and pY1086) on the receptor displays a sharp threshold effect as a function of EGF concentration. Here we use a simple modelling approach together with experiments to show that the establishment of the threshold requires both the multiplicity of binding sites and cooperative binding of Cbl and Grb2 to the EGFR. While the threshold is remarkably robust, a more sophisticated model predicted that it could be modulated as a function of EGFR levels on the cell surface. We confirmed experimentally that the system has evolved to perform optimally at physiological levels of EGFR. As a consequence, this system displays an intrinsic weakness that causes—at the supraphysiological levels of receptor and/or ligand associated with cancer—uncoupling of the mechanisms leading to signalling through phosphorylation and attenuation through ubiquitination

Similar works

Full text

thumbnail-image

Archivio della Ricerca - Università di Pisa

redirect
Last time updated on 17/12/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: license uri:http://creativecommons.org/licenses/by/4.0/