research articlejournal article

A new twist on glass: A brittle material enabling flexible integrated photonics

Abstract

Glass is in general brittle and therefore usually cannot sustain large deformation. Recent advances in glass material development as well as micro-mechanical designs, however, are set to defy the conventional wisdom through the demonstration of flexible integrated photonics that can be bent, twisted, and even stretched without compromising its structural integrity and optical performance. In this paper, we review the latest progress in this emerging field, and discuss the rational material and mechanical engineering principles underlying the extraordinary flexibility of these photonic structures. Leveraging these design strategies, we demonstrated bendable chalcogenide glass waveguide circuits, flexible glass waveguide-integrated nanomembrane photodetectors, and stretchable glass photonics.National Science Foundation (U.S.) (Award 1453218)National Science Foundation (U.S.) (Award 1506605)United States. Department of Energy (Grant DE-NA0002509

Similar works

Full text

thumbnail-image

DSpace@MIT

redirect
Last time updated on 14/12/2017

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by-nc-sa/4.0/