Using stochastic dynamic programming to support weed management decisions over a rotation

Abstract

This study describes a model that predicts the impact of weed management on the population dynamics of arable weeds over a rotation and presents the economic consequences. A stochastic dynamic programming optimisation is applied to the model to identify the management strategy that maximises gross margin over the rotation. The model and dynamic programme were developed for the weed management decision support system -'Weed Manager'. Users can investigate the effect of management practices (crop, sowing time, weed control and cultivation practices) on their most important weeds over the rotation or use the dynamic programme to evaluate the best theoretical weed management strategy. Examples of the output are given in this paper, along with discussion on their validation. Through this study, we demonstrate how biological models can (i) be integrated into a decision framework and (ii) deliver valuable weed management guidance to users

Similar works

This paper was published in Cranfield CERES.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.