We consider 1-complemented subspaces (ranges of contractive projections) of vector-valued spaces l(p)(X), where X is a Banach space with a 1-unconditional basis and p is an element of (1,2) boolean OR (2, infinity). If the norm of X is twice continuously differentiable and satisfies certain conditions connecting the norm and the notion of disjointness with respect to the basis, then we prove that every 1-complemented subspace of l(p)(X) admits a basis of mutually disjoint elements. Moreover, we show that every contractive projection is then an averaging operator. We apply our results to the space l(p)(l(q)) with p,q is an element of (1,2) boolean OR (2, infinity) and obtain a complete characterization of its 1-complemented subspaces
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.