Dynamics of non-expansive maps on strictly convex Banach spaces

Abstract

This paper concerns the dynamics of non-expansive maps on strictly convex finite dimensional normed spaces. By using results of Edelstein and Lyubich, we show that if X = (a"e (n) , ayen center dot ayen) is strictly convex and X has no 1-complemented Euclidean plane, then every bounded orbit of a non-expansive map f: X -> X, converges to a periodic orbit. By putting extra assumptions on the derivatives of the norm, we also show that the period of each periodic point of a non-expansive map f: X -> X is the order, or, twice the order of a permutation on n letters. This last result generalizes a theorem of Sine, who proved it for a"" (p) (n) where 1 < p < a and p not equal 2. To obtain the results we analyze the ranges of non-expansive projections, the geometry of 1-complemented subspaces, and linear isometries on 1-complemented subspaces

Similar works

Full text

thumbnail-image

Warwick Research Archives Portal Repository

redirect
Last time updated on 03/04/2012

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.