Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

Abstract

We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion of solid boundary conditions. We show that a porosity model is ideally suited for topology optimization purposes and models no-slip boundary conditions with sufficient accuracy when compared to interpolation bounce-back conditions. Augmenting the porous boundary condition with a shaping factor, we define a generalized geometry optimization formulation and derive the corresponding sensitivity analysis for the single relaxation LBM for both topology and shape optimization applications. Using numerical examples, we verify the accuracy of the analytical sensitivity analysis through a comparison with finite differences. In addition, we show that for fluidic topology optimization a scaled volume constraint should be used to obtain the desired "0-1" optimal solutions. (C) 2008 Elsevier Ltd. All rights reserved

Similar works

Full text

thumbnail-image

Online Research Database In Technology

redirect
Last time updated on 22/08/2013

This paper was published in Online Research Database In Technology.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.