A model of the mechanical degradation of foam replicated scaffolds

Abstract

Tissue engineering scaffolds are implants that actively support tissue growth whilst providing mechanical support. For optimum functionality, they are designed to slowly dissolve in vivo so that no foreign material remains permanently implanted inside the body. The current study uses a simple degradation model that estimates the change of scaffold geometry due to surface erosion. This model is applied on scaffolds that have been manufactured using the foam replication method. In order to capture their complex geometry, micro-computed tomography scans of samples are obtained. Their change in geometry and degradation of mechanical properties is evaluated using computational analysis. The present investigation found that the mechanical properties such as the quasi-elastic gradient, 0.2 % offset yield stress and the plateau stress are decreased systematically over a 10-week period of immersion time. Deformation analysis on the titania foam scaffold is performed by means of the deformed model obtained from finite element calculations

Similar works

Full text

thumbnail-image

Universiti Teknologi Malaysia Institutional Repository

redirect
Last time updated on 02/12/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.