Fabrication, degradation behavior and cytotoxicity of nanostructured hardystonite and titania/hardystonite coatings on Mg alloys

Abstract

In this study, nanostructured hardystonite (HT) and titania (TiO2)/hardystonite (HT) dual-layered coatings were deposited on biodegradable Mg-Ca-Zn alloy via physical vapor deposition (PVD) combined with electrophoretic deposition (EPD). Although a single layer nano-HT coating can decrease the corrosion rate from 1.68 to 1.02 mm/year, due to the presence of porosities and microcracks, the nano-HT layer cannot sufficiently protect the Mg substrate. In contrast, the corrosion resistance of nano-HT coating is further improved by using nano-TiO2 underlayer since it was a smooth, very uniform and compact layer with higher contact angle (52.30°). In addition, the MTT assay showed the viability of MC3T3-E1 on the nano-HT and nano-TiO2/HT coatings. The results demonstrated that the two-step surface modification improved both corrosion resistance and the cytocompatibility of the Mg alloy, hence making it feasible for orthopedic applications

Similar works

Full text

thumbnail-image

Universiti Teknologi Malaysia Institutional Repository

redirect
Last time updated on 02/12/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.