Skip to main content
Article thumbnail
Location of Repository

Intrinsically Resolution Enhancing Probes for Confocal Microscopy

By Jan Vogelsang, Thorben Cordes, Carsten Forthmann, Christian Steinhauer and Philip Tinnefeld


In recent years different implementations of superresolution microscopy based on targeted switching (STED, GSD, and SSIM) have been demonstrated. The key elements to break the diffraction barrier are two distinct molecular states that generate a saturable nonlinear fluorescence response with respect to the excitation intensity. In this paper, we demonstrate that a nonlinearity can even be encoded in fluorescent probes, which then increase the resolution of a standard confocal microscope. This nonlinearity is achieved by an intensity dependent blocking of the resonance energy transfer between a donor and one or more acceptor fluorophores, utilizing radical anion states of the acceptor. In proof-of-principle experiments, we demonstrate a significant resolution increase using probes with different numbers of acceptor fluorophores. Quantitative description by a theoretical model paves the way for the development of fluorescent probes that can more than double the resolution of essentially any confocal microscope in all three dimensions.

Year: 2010
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.