Optimization of the charge transport in poly(phenylene vinylene) derivatives by processing and chemical modification

Abstract

We present a systematic study of the influence of the processing conditions on the charge-carrier mobility in hole-only diodes and field-effect transistors (FETs) based on alkoxy-substituted poly(p-phenylene vinylene) (PPV). It is demonstrated that by chemical modification from asymmetrically to fully symmetrically substituted PPVs the mobility in both types of devices can be significantly improved. Furthermore, for symmetrical PPVs the mobility is strongly dependent on processing conditions, such as choice of solvents and annealing conditions. The increase in mobility is accompanied by a strong enhancement of the anisotropy in the charge transport. Ultimately, mobility of up to 10βˆ’2 cm2/Vs in FETs and 10βˆ’5 cm2/Vs in hole-only diodes have been achieved.

Similar works

Full text

thumbnail-image

University of Groningen Digital Archive

redirect
Last time updated on 06/08/2013

This paper was published in University of Groningen Digital Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.