Loading analysis of a remotely interrogatable passive microvalve

Abstract

We present the dynamic loading analysis of a normally closed, remotely actuated, secure coded, electrostatically driven, active microvalve using passive components. The design employs a synergetic approach to incorporates the advantages of both electroacoustic correlation and electrostatic actuation into the microvalve structure. This is carried out by utilising the complex signal processing capabilities of two identical, 5×2-bit Barker sequence encoded, acoustic wave correlators. An electrostatically driven microchannel, comprising of two conducting diaphragms as the top and bottom walls, is placed in between the compressor IDT's of the two correlators. Secure interrogability of the microvalve is demonstrated by the 3-D finite element modelling of the complete structure and the quantitative deduction of the harmonic code dependent microchannel actuation. Furthermore, the dynamic transient analysis is employed to investigation the nonlinear time response of the microvalve and other performance criteria of the structure such as microchannel opening dynamics and the microvalve loading time. © 2009 Springer-Verlag Berlin Heidelberg.Ajay C. Tikka, Said F. Al-Sarawi and Derek Abbot

Similar works

Full text

thumbnail-image

Adelaide Research & Scholarship

redirect
Last time updated on 05/08/2013

This paper was published in Adelaide Research & Scholarship.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.