Abstract

The growth in global methane (CH₄) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH₄ sink, in the recent CH₄ growth. We also examine the influence of systematic uncertainties in OH concentrations on CH₄ emissions inferred from atmospheric observations. We use observations of 1,1,1- trichloroethane (CH₃CCl₃), which is lost primarily through reaction with OH, to estimate OH levels as well as CH₃CCl₃ emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64-70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH₄ emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH₄ emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric ¹³CH₄/¹²CH₄ ratio and the recent growth in C₂H₆. Our approach indicates that significant OH-related uncertainties in the CH₄ budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH₄ emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered

Similar works

This paper was published in DSpace@MIT.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.