Location of Repository

The symmetry of the Hamiltonian describing the asymmetric twin model was partially studied in earlier works, and our aim here is to generalize these results for the open transfer matrix. In this spirit we first prove, that the so called boundary quantum algebra provides a symmetry for any generic - independent of the choice of model - open transfer matrix with a trivial left boundary. In addition it is shown that the boundary quantum algebra is the centralizer of the $B$ type Hecke algebra. We then focus on the asymmetric twin representation of the boundary Temperley-Lieb algebra. More precisely, by exploiting exchange relations dictated by the reflection equation we show that the transfer matrix with trivial boundary conditions enjoys the recognized $U_q(sl_2)otimes U_i(sl_2)$ symmetry. When a non-diagonal boundary is implemented the symmetry as expected is reduced, however again certain familiar boundary non-local charges turn out to commute with the corresponding transfer matrix

Topics:
quantum integrability, boundary symmetries, quantum algebras, Hecke algebras, Mathematics, QA1-939, Science, Q, DOAJ:Mathematics, DOAJ:Mathematics and Statistics

Publisher: National Academy of Science of Ukraine

Year: 2007

OAI identifier:
oai:doaj.org/article:2ae3740f8ff0495481ae3fa8133a112e

Provided by:
Directory of Open Access Journals (new)

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.