Location of Repository

Stochastic Resource Allocation for Energy-Constrained Systems

By Sachs DanielGrobe and Jones DouglasL

Abstract

<p/> <p>Battery-powered wireless systems running media applications have tight constraints on energy, CPU, and network capacity, and therefore require the careful allocation of these limited resources to maximize the system's performance while avoiding resource overruns. Usually, resource-allocation problems are solved using standard knapsack-solving techniques. However, when allocating <it>conservable</it> resources like energy (which unlike CPU and network remain available for later use if they are not used immediately) knapsack solutions suffer from excessive computational complexity, leading to the use of suboptimal heuristics. We show that use of Lagrangian optimization provides a fast, elegant, and, for convex problems, optimal solution to the allocation of energy across applications as they enter and leave the system, even if the exact sequence and timing of their entrances and exits is not known. This permits significant increases in achieved utility compared to heuristics in common use. As our framework requires only a stochastic description of future workloads, and not a full schedule, we also significantly expand the scope of systems that can be optimized.</p

Topics: Technology (General), T1-995, Technology, T, DOAJ:Technology (General), DOAJ:Technology and Engineering, Telecommunication, TK5101-6720, Electronics, TK7800-8360
Publisher: Springer
Year: 2009
OAI identifier: oai:doaj.org/article:0c7c2a999d7e40598616a5910039e26a
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1687-1499 (external link)
  • https://doaj.org/toc/1687-1472 (external link)
  • http://jwcn.eurasipjournals.co... (external link)
  • https://doaj.org/article/0c7c2... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.