Skip to main content
Article thumbnail
Location of Repository

An unheated permeation device for calibrating atmospheric VOC measurements

By J. Brito and A. Zahn

Abstract

The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs) is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i) a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii) a water bath as heat buffer, and (iii) a vacuum-panel based insulation, in which features (ii) and (iii) minimize temperature drifts to ~30 mK h<sup>−1</sup> per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm) dominates

Topics: Meteorology. Climatology, QC851-999, Physics, QC1-999, Science, Q, DOAJ:Meteorology and Climatology, DOAJ:Earth and Environmental Sciences, Environmental engineering, TA170-171, Earthwork. Foundations, TA715-787
Publisher: Copernicus Publications
Year: 2011
DOI identifier: 10.5194/amt-4-2143-2011
OAI identifier: oai:doaj.org/article:2a83d9dff9a04c779cc505f98dc5ca28
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1867-8548 (external link)
  • https://doaj.org/toc/1867-1381 (external link)
  • http://www.atmos-meas-tech.net... (external link)
  • https://doaj.org/article/2a83d... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.