A Condensation Technique for Finite Element Dynamic Analysis Using Fractional Derivative Viscoelastic Models

Abstract

Fractional derivative rheological models are known to be very useful for describing the viscoelastic behaviour of materials, especially of polymers, and when applied to dynamic problems, the resulting equations of motion, after a fractional state-space expansion, can still be studied in terms of modal analysis. The increase in matrix dimensions produced by this expansion, however, is often so fast as to make the calculations too cumbersome for finite element applications. This article presents a condensation technique based on the computation of two reduced-size eigenproblems. The rheological model adopted is the fractional Zener (fractional standard linear solid) model, but the same methodology can be applied to problems using different fractional derivative linear model

Similar works

Full text

thumbnail-image

PORTO Publications Open Repository TOrino

redirect
Last time updated on 10/07/2013

This paper was published in PORTO Publications Open Repository TOrino.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.