Electrical resistivity of solid and liquid Cu up to 5 GPa: Decrease along the melting boundary

Abstract

The electrical resistivity of high purity Cu has been investigated by both experiments and first principle calculations at pressures up to 5 GPa and at temperatures in the liquid phase up to 1730 K. The resistivity decreases with P and increases with T and our data are in very good agreement in relation to 1 atm data. Our melting temperature data agree with other experimental studies. We show that resistivity of Cu decreases along the P,T-dependent melting boundary in disagreement with prediction of resistivity invariance along the melting boundary. These findings are interpreted in terms of the competing effects of P and T on the electronic structure of liquid Cu. The electronic thermal conductivity is calculated from resistivity data using the Wiedemann-Franz law and is shown to increase with P in both the solid and liquid states but upon T increase, it decreases in the solid and increases in the liquid state

Similar works

This paper was published in UCL Discovery.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.