Phototaxis beyond turning: persistent accumulation and response acclimation of the microalga Chlamydomonas reinhardtii

Abstract

Phototaxis is an important reaction to light displayed by a wide range of motile microorganisms. Flagellated eukaryotic microalgae in particular, like the model organism Chlamydomonas reinhardtii, steer either towards or away from light by a rapid and precisely timed modulation of their flagellar activity. Cell steering, however, is only the beginning of a much longer process which ultimately allows cells to determine their light exposure history. This process is not well understood. Here we present a first quantitative study of the long timescale phototactic motility of Chlamydomonas at both single cell and population levels. Our results reveal that the phototactic strategy adopted by these microorganisms leads to an efficient exposure to light, and that the phototactic response is modulated over typical timescales of tens of seconds. The adaptation dynamics for phototaxis and chlorophyll fluorescence show a striking quantitative agreement, suggesting that photosynthesis controls quantitatively how cells navigate a light field

    Similar works

    Full text

    thumbnail-image

    Warwick Research Archives Portal Repository

    redirect
    Last time updated on 02/11/2017

    This paper was published in Warwick Research Archives Portal Repository.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.