Controllable Synthesis of ZnO with Various Morphologies by Hydrothermal Method

Abstract

ZnO microstructures with various morphologies have been controllably synthesized by hydrothermal route using different precipitant and zinc source in liquid solution. X-ray diffraction (XRD) and scan-ning electron microscopy (SEM) were used to characterize the ZnO2, Zn(OH)2 and ZnO structures to understand the role of precipitant and precursors in the growth of various morphologies. The nucleation and growth process can regulate by changing the precipitant. When H2O2 was used as precipitant, ZnO particles with a rather uniform particle size of ∼500 nm and a rather rough surface was obtained. While, ZnO synthesized in this polyvinyl pyrrolidone (PVP) solution has the same granular morphology with particle size of 300–1000 nm. In contrast, ZnO sunflower and polyhedron aggregates composed of several smaller polyhedron were formed, when ammonium hydroxide and NH4HCO3 was applied, respectively. Meanwhile, precursors play an important role in the deter-mination of the morphology of ZnO. Sunflower and dumbbell like ZnO composed of nanosheets were obtained, when different centrifugal component of Zn(OH)2 suspension was applied as zinc source. In contrast, sunflower and dumbbell like ZnO composed of nanorods and ZnO rods were obtained, when different centrifugal components of ZnO2 suspension were used as zinc sources. The growth mechanism of ZnO nanostructures fabricated by the hydrothermal process using differ-ent zinc sources was tentatively investigated

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 02/11/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.