Mechanistic Studies on the Absorption and Disposition of Scutellarin in Humans: Selective OATP2B1-Mediated Hepatic Uptake Is a Likely Key Determinant for Its Unique Pharmacokinetic Characteristics

Abstract

Scutellarin [scutellarein-7-O-glucuronide (S-7-G)] displayed a unique pharmacokinetic profile in humans after oral administra-tion: the original compound was hardly detected, whereas its iso-meric metabolite isoscutellarin [scutellarein-6-O-glucuronide (S-6-G)] had a markedly high exposure. Previous rat study revealed that S-7-G and S-6-G in the blood mainly originated from their aglycone in enterocytes, and that the S-7-G/S-6-G ratio declined dramati-cally because of a higher hepatic elimination of S-7-G. In the present study, metabolite profiling in human excreta demonstrated that the major metabolic pathway for S-6-G and S-7-G was through further glucuronidation. To further understand the cause for the exposure difference between S-7-G and S-6-G in humans, studies were conducted to uncover mechanisms underlying their forma-tion and elimination. In vitro metabolism study suggested that S-7-G was formed more easily but metabolized more slowly in human intestinal and hepatic microsomes. Efflux transporter study showed that S-6-G and S-7-G were good substrates of breast cancer resistance protein and multidrug resistance-associated protein (MRP) 2 and possible substrates of MRP3; however, there was no preference great enough to alter the S-7-G/S-6-G ratio in the blood. Among the major hepatic anion uptake transporters, organic anion-transporting polypeptide (OATP) 2B1 played a pre-dominant role in the hepatic uptake of S-6-G and S-7-G and showed greater preference for S-7-G with higher affinity than S-6-G (Km values were 1.77 and 43.9 M, respectively). Consider-ing the low intrinsic permeability of S-6-G and S-7-G and the role of OATP2B1 in the hepatic clearance of such compounds, the selec-tive hepatic uptake of S-7-G mediated by OATP2B1 is likely a key determinant for the much lower systemic exposure of S-7-G than S-6-G in humans

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 01/11/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.